The Orb
Last updated
Last updated
Previous sections discussed why a custom hardware device using iris biometrics is the only approach to ensure inclusivity (i.e. everyone can sign up regardless of their location or background) and fraud resistance, promoting fairness for all participants.
It would have been significantly easier to use off the shelf available devices like smartphones or iris imaging devices. However, neither is suitable for uncontrolled and adversarial environments in the presence of significant incentives. To reliably distinguish people, only iris biometrics are suitable for this globally scalable use case . To enable maximum accuracy, device integrity, spoof prevention as well as privacy, a custom device is necessary. The reasoning is described in the following section.
#In terms of the biometric verification itself, the fastest and most scalable path would be to use smartphones. However, there are several key challenges with this approach. First, smartphone cameras are insufficient for iris biometrics due to their low resolution across the iris, which decreases accuracy. Further, imaging in the visible spectrum can result in specular reflections on the lens covering the iris and low reflectivity of brown eyes (most of the population) introduces noise. The Orb captures high quality iris images with more than an order of magnitude higher resolution compared to iris recognition standards. This is enabled by a custom, narrow field-of-view camera system. Importantly, images are captured in the near infrared spectrum to reduce environmental influences like different light sources and specular reflections.
Second, the achievable security bar is very low. For PoP, the important part is not identification (i.e. “Is someone who they claim they are?”), but rather proving that someone has not verified yet (i.e. “Is this person already registered?”). A successful attack on a PoP system does not necessitate the attacker’s impersonation of an existing individual, which is a challenging requirement that would be needed to unlock someone's phone. It merely requires the attacker to look different from everyone who has registered so far. Phones and existing iris cameras are missing multi-angle and multi-spectral cameras as well as active illumination to detect so-called presentation attacks (i.e. spoof attempts) with high confidence. A widely-viewed video demonstrating an effective method for spoofing Samsung’s iris recognition illustrates how straightforward such an attack could be in the absence of capable hardware.
Further, a trusted execution environment would need to be established in order to ensure that verifications originated from legitimate devices (not emulators). While some smartphones contain dedicated hardware for performing such actions (e.g., the Secure Enclave on the iPhone, or the Titan M chip on the Pixel), most smartphones worldwide do not have the hardware necessary to verify the integrity of the execution environment. Without those security features, basically no security can be provided and spoofing the image capture as well as the enrollment request is straightforward for a capable attacker. This would allow anyone to generate an arbitrary number of synthetic verifications.
Similarly, no off-the-shelf hardware for iris recognition met the requirements that were necessary for a global proof of personhood. The main challenge is that the device needs to operate in untrusted environments which poses very different requirements than e.g. access control or border control where the device is operated in trusted environments by trusted personnel. This significantly increases the requirements for both spoof prevention as well as hardware and software security. Most devices lack multi-angle and multispectral imaging sensors for high confidence spoof detection. Further, to enable high security spoof detection, a significant amount of local compute on the device is needed, without the ability to intercept data transmission, which is not the case for most iris scanners. A custom device enables full control over the design. This includes tamper detection that can deactivate the device upon intrusion, firmware that is designed for security to make unauthorized access very difficult, as well as the possibility to update the firmware down to the bootloader via over the air updates. All iris codes generated by an Orb are signed by a secure element to make sure they originate from a legitimately provisioned Orb, instead of, for example, an attacker’s laptop. Further, the computing unit of the Orb is capable of running multiple real-time neural networks on the five camera streams (mentioned in the last section). This processing is used for real time image capture optimization as well as spoof detection. Additionally, this enables maximum privacy by processing all images on the device such that no iris images need to be stored by the verifier.
While no hardware system interacting with the physical world can achieve perfect security, the Orb is designed to set a high bar, particularly in defending against scalable attacks. The anti-fraud measures integrated into the Orb are constantly refined. Several teams at Tools for Humanity are continuously working on increasing the accuracy and sophistication of the liveness algorithms. An internal red team is probing various attack vectors. In the near future, the red teaming will extend to external collaborators including through a bug bounty program.
Lastly, the correlation between image quality and biometric accuracy is well established, and it is expected that deep learning will benefit even more from increased image quality. Given the goal of reducing error rates as much as possible to achieve maximum inclusivity, the image quality of most devices was insufficient.